Precursor-modified strategy to synthesize thin porous amino-rich graphitic carbon nitride with enhanced photocatalytic degradation of RhB and hydrogen evolution performances

نویسندگان

چکیده

The photocatalytic activity of carbon nitride (CN) materials is mainly limited to small specific surface areas, solar absorption, and low separation mobility photoinduced carriers. In this study, we developed a precursor-modified strategy for the synthesis graphitic CN with highly efficient performance. precursor dicyandiamide reformed by different acids undergoes basic structural change transforms into diverse new precursors. thin porous amino-rich HNO3-CN (5H-CN) was calcined dicyandiamidine nitrate, formed concentrated nitric acid modified dicyandiamide, presented best degradation rate RhB, more than 34 times that bulk CN. Moreover, hydrogen evolution 5H-CN significantly improved. TG-DSC-FTIR analyses indicated distinguishing thermal polymerization process led its structure, theoretical calculations revealed negative conduction band potential attributed structure. It anticipated structure position play important roles in improvement This study demonstrates modification promising project induce polycondensation enhanced

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ammonia-induced robust photocatalytic hydrogen evolution of graphitic carbon nitride.

We report a new and effective method to prepare high activity graphitic carbon nitride (g-C3N4) by a simple ammonia etching treatment. The obtained g-C3N4 displays a high BET surface area and enhanced electron/hole separation efficiency. The hydrogen evolution rates improved from 52 μmol h(-1) to 316.7 μmol h(-1) under visible light.

متن کامل

Graphitic Carbon Nitride/Reduced Graphene Oxide/Silver Oxide Nanostructures with Enhanced Photocatalytic Activity in Visible Light

Visible light active graphitic carbon nitride/reduced graphene oxide/silver oxide nanocomposites with a p-n heterojunction structure were synthesized by chemical deposition methods. Prepared samples were characterized by different physico-chemical technics such as XRD, FTIR, SEM, TEM and DRS. Photocatalytic activity investigated by analyzing the Acid blue 92 (AB92) concentration during the time...

متن کامل

Porous carbon nitride nanosheets for enhanced photocatalytic activities.

Porous carbon nitride nanosheets (PCNs) have been prepared for the first time by a simple liquid exfoliation method via probe sonication. These mesoporous nanosheets of around 5 nm in thickness combine several advantages including high surface area, enhanced light absorption and excellent water dispersity. It can be used as a versatile support for co-catalyst loading for photocatalytic dye degr...

متن کامل

Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production.

Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was use...

متن کامل

Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light.

Platinum (Pt) nanoparticles with <4 nm diameter loaded on graphitic carbon nitride (g-C3N4) by reduction at 673 K behave as efficient co-catalysts for photocatalytic hydrogen evolution under visible light (λ >420 nm). This is achieved by strong Pt-support interaction due to the high temperature treatment, which facilitates efficient transfer of photoformed conduction band electrons on g-C3N4 to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chinese Journal of Catalysis

سال: 2022

ISSN: ['0253-9837', '1872-2067']

DOI: https://doi.org/10.1016/s1872-2067(21)63873-1